Cholesteatoma is a term whose initial use can be credited to Muller in 1838. The first case, however, of a cholesteatoma-like mass was reported by Du Verneey in 1683, who described a mass between the cerebellum and the cerebrum. In essence, the term cholesteatoma represents the presence of the stratified squamous epithelium within the middle ear space that clinically has two significant properties, namely secondary infection and bone erosion (Fig. 2.1).

It is accepted that cholesteatoma may be either congenital or acquired [8]. To date, several pathogenic mechanisms have been proposed to explain the pathogenesis of cholesteatoma. Proposed theories of congenital cholesteatoma include: (a) the presence of an ectopic epidermis rest, (b) in-growth of meatal epidermis, (c) metaplasia following infection/inflammation, and somewhat interestingly, (d) reflux of amniotic fluid containing squamous epithelium in utero into the middle ear (Fig. 2.2).

The actual incidence of congenital cholesteatoma is difficult to determine. Nevertheless, greater awareness among physicians has occurred with the introduction of the high resolution CT and MRI. Perhaps as a result, its incidence seems to be increasing [5, 10].

Unlike primary acquired cholesteatoma, congenital cholesteatoma typically does not present with a prior
history of otorrhea, tympanic membrane perforation, or previous surgery. While there is hearing loss (usually conductive initially), the tympanic membrane is typically normal. With a close inspection, however, a pearly white mass (so-called Michael’s body) medial to the ear drum is often noted [5, 7].

At the other end of the disease spectrum, the clinical picture of a child with otorrhea, hearing loss (conductive type), a tympanic membrane perforation in an atypical location together with a mastoid filled with cholesteatoma also may represent the end point in the natural history of congenital cholesteatoma. Distinguishing between congenital and acquired cholesteatoma is, however, not always that obvious [6].

Proposed theories for the pathogenesis of acquired cholesteatoma, include: (a) invaginations of the tympanic membrane from chronic Eustachian tube dysfunction resulting in retraction pockets (primary acquired cholesteatoma), (b) basal cell proliferation, (c) epithelial in-growth into the middle ear through a perforation (the immigration theory), (d) or inadvertent implantation (following myringotomy or tympanoplasty surgery), and (e) squamous metaplasia of the middle ear epithelium secondary to chronic infection/inflammation/persistent use of ototopical agents [8] (Figs. 2.3–2.5).

Congenital cholesteatoma of the temporal bone may be divided into four anatomic areas for consideration: (1) middle ear, (2) petrous apex, (3) perigeniculate area, and (4) primary cerebellopontine angle and combinations thereof [1].

The most common sites of presentation on physical examination are behind the anterior-superior and posterior–superior quadrants of the tympanic membrane. While conductive hearing loss tends to be the most common presenting symptom, perigeniculate and petrous apex cholesteatomas are not infrequently present with an insidious or rapidly progressive facial nerve paralysis [5].

Bone erosion and secondary infection from cholesteatoma can lead to both intratemporal (facial paralysis, infective cochleolabyrinthitis, etc.) and intracranial complications (meningitis, brain abscess, sigmoid sinus...
thrombophlebitis, etc.) in both congenital and acquired forms of the disease.

Occasionally, a patient with congenital cholesteatoma may present with complications of the disease. Complications of congenital cholesteatoma that arise from bone erosion not infrequently involve the facial nerve at the level of the geniculate ganglion and its labyrinthine segment. Despite significant erosion into the otic capsule, partial hearing and vestibular function are not infrequently maintained [13].

Bilateral congenital cholesteatoma is a rare condition but has been reported [7] (Figs. 2.6–2.10).

In general, intracranial complications are more likely to arise in primary acquired cholesteatoma as a result of secondary infection. Erosion into the otic capsule of the lateral semicircular canal is frequently identified in primary acquired cholesteatoma where disease spread usually follows an orderly pattern through a route of least resistance via the aditus ad antrum, antrum, and into the mastoid bone proper (Figs. 2.11–2.25).

Cholesteatoma is still considered a surgical disease requiring either the complete removal of its squamous lined matrix or its exteriorization for continued aural toilet and ventilation. To this end, different tympanomastoidectomy procedures are available.

Surgery for cholesteatoma is generally divided into combined approach tympanomastoidectomy (canal wall up) or modified radical and radical (canal wall down) mastoidectomy procedures. The first and foremost goal of surgery is to provide a safe, dry and when possible, a better hearing ear. Reconstruction of the ossicular chain (ossiculoplasty) often depends on the remaining anatomy of the middle ear and Eustachian tube function. Hearing results in congenital cholesteatoma frequently depend on its location and the significant involvement of the ossicular chain.
Cholesteatoma and Its Complications

Fig. 2.9 MRI T2-weighted image demonstrating congenital cholesteatoma (see arrow). Relative magnitude of hydrogen atoms in keratin causes it to assume a bright fluid-like signal similar to cerebrospinal fluid.

Fig. 2.10 MRI image of intralabyrinthine cholesteatoma (arrow).

Fig. 2.11 Primary acquired cholesteatoma causing erosion with fistula into the lateral semicircular canal (see arrow). Axial CT scan.

Fig. 2.12 Acute bacterial labyrinthitis from cholesteatoma involving the lateral semicircular canal.

Fig. 2.13 Acute bacterial labyrinthitis involving the superior semicircular canal from cholesteatoma.
When restricted to the epitympanum, good results in hearing following surgery are often possible especially if the cholesteatoma is diagnosed and treated early [3, 11, 12].

From the world literature, it would appear that the best treatment results in childhood cholesteatoma are obtained in the early clinical stage. Open procedures (i.e., atticotomy, modified radical mastoidectomy, etc.) seem to have the best long-term results. However, canal wall up procedures have been recommended as the first-line surgical option in children. Nevertheless, the recidivistic (residual and recurrent disease) rate tends to be higher. Each case therefore needs to be evaluated separately and the appropriate technique should be tailored to the individual patient’s needs and surgical expectations [4, 5].

Fig. 2.14 Axial CT scan. Labyrinthitis ossificans of the cochlea and labyrinth following acute labyrinthitis caused by cholesteatoma. Note the absence of inner ear structures. See *black circle*

Fig. 2.15 Labyrinthitis ossificans (see *circle*) secondary to cholesteatoma in the left ear (same patient as in Fig. 2.14). Note the normal lateral SCC and ossicles in right ear

Fig. 2.16 Labyrinthitis ossificans from cholesteatoma (same patient as in Figs. 2.14 and 2.15). Note the absence of cochlea in the left ear compared to the right side
Cholesteatoma and Its Complications

Petrous apex cholesterol granulomas share many similar clinical features with cholesteatomas in the petrous apex. However, their pathogenesis appears very different. A cholesterol granuloma specifically represents a foreign body granulomatous response to cholesterol crystals in the submucosal tissues of air cells in the temporal bone. While cholesterol granulomas are frequently found in patients with chronic otitis media, it is thought that petrous apex cholesterol granulomas are common in patients with chronic otitis media. The granulomas may develop due to the presence of cholesterol crystals in the submucosal tissues of the air cells.

Fig. 2.17 Coronal CT scan demonstrating labyrinthitis ossificans of semicircular canals (see circle) (same patient as in Figs. 2.14 and 2.15)

Fig. 2.18 Labyrinthitis ossificans from cholesteatoma. The ossification process (osteoneogenesis) usually starts in the basal turn of the cochlea closest to the round window membrane. See arrow. Note that a previous mastoidectomy had been performed.

Fig. 2.19 Meningitis secondary to cholesteatoma

Fig. 2.20 Labyrinthitis ossificans demonstrating osteoneogenesis postmeningitis. The patient survived the meningitis but developed a complete cochleovestibular loss.

Fig. 2.21 Intracranial complication of cholesteatoma. Temporal lobe brain abscess, secondary to cholesteatoma.

Porous apex cholesterol granulomas share many similar clinical features with cholesteatomas in the petrous apex. However, their pathogenesis appears very different. A cholesterol granuloma specifically represents a foreign body granulomatous response to cholesterol crystals in the submucosal tissues of air cells in the temporal bone. While cholesterol granulomas are frequently found in patients with chronic otitis media, it is thought that petrous apex cholesterol granulomas are common in patients with chronic otitis media. The granulomas may develop due to the presence of cholesterol crystals in the submucosal tissues of the air cells.

Fig. 2.17 Coronal CT scan demonstrating labyrinthitis ossificans of semicircular canals (see circle) (same patient as in Figs. 2.14 and 2.15)

Fig. 2.18 Labyrinthitis ossificans from cholesteatoma. The ossification process (osteoneogenesis) usually starts in the basal turn of the cochlea closest to the round window membrane. See arrow. Note that a previous mastoidectomy had been performed.

Fig. 2.19 Meningitis secondary to cholesteatoma

Fig. 2.20 Labyrinthitis ossificans demonstrating osteoneogenesis postmeningitis. The patient survived the meningitis but developed a complete cochleovestibular loss.

Fig. 2.21 Intracranial complication of cholesteatoma. Temporal lobe brain abscess, secondary to cholesteatoma.
Granulomas arise when a normally pneumatized air cell becomes isolated from it air supply.

Progressive growth of a petrous apex cholesterol granuloma may result in a petrous apex syndrome with diplopia from the abducens nerve involvement and the

Fig. 2.22 Intracranial complications of cholesteatoma. Cerebellar abscess and sigmoid sinus thrombophlebitis (see circle) as complications of cholesteatoma

Fig. 2.23 Lung abscess secondary to infected thromboemboli from sigmoid sinus thrombophlebitis (same patient as in Fig. 2.21). Le Meriere’s disease is used to describe this phenomenon

Fig. 2.24 Intracranial complication. Abscess in the internal auditory canal secondary to cholesteatoma (see arrow)

Fig. 2.25 Intracranial complication. Pontine abscess secondary to cholesteatoma
trigeminal and facial nerve palsies. The onset of the sensorineural hearing loss and vertigo implies erosion into the inner ear. Treatment requires extensive surgical drainage following the pneumatized perilabyrinthine air cell tracts surrounding the otic capsule when inner ear function is present. However, recurrences are not infrequent and multiple surgeries are often required [2, 9] (Figs. 2.26–2.31).

Fig. 2.26 MRI scan demonstrating clival epidermoid (arrow). Example of a congenital rest of epithelial cells remote from the middle ear and mastoid.

Fig. 2.27 Cholesterol granulomas are characterized by numerous empty, ovoid, slit-like spaces that are surrounded by foreign body giant cells and fibrous tissue.

Fig. 2.28 MRI scan demonstrating a large left petrous apex cholesterol granuloma in a patient presenting with diplopia from an abducens nerve palsy. See arrow.

Fig. 2.29 CT demonstrating smooth expansile mass in the petrous apex. Same patient as in Fig. 2.28. See yellow arrow.
References

Fig. 2.30 Postoperative axial CT scan demonstrating aeration of the petrous apex following mastoid and infralabyrinthine drainage. See yellow arrow

Fig. 2.31 Postoperative coronal CT scan demonstrating infralabyrinthine approach for drainage
Diseases of the Inner Ear
A Clinical, Radiologic, and Pathologic Atlas
Motasaddi Zarandy, M.; Rutka, J. (Eds.)
2010, VIII, 94 p. 190 illus. in color., Hardcover
ISBN: 978-3-642-05057-2

http://www.springer.com/978-3-642-05057-2